Investigating quantum graph variations as functions of time
Authors: Gavrikov A.M. | |
Published in issue: #11(16)/2017 | |
DOI: 10.18698/2541-8009-2017-11-191 | |
Category: Physics | Chapter: Physics and technology of nanostructures, nuclear and molecular |
|
Keywords: Schrödinger equations, kinetic energy, discrete structures, quantum graph, boundary conditions |
|
Published: 30.10.2017 |
The article deals with monotonically expanding and harmonic quantum star graphs featuring bonds of variable length. The study of these structures is important for processing particle transfer ïn various discrete structures, for instance, in quantum and molecular wire networks, as well as for carbon nanotubes and systems simulated by quantum graphs. We solved the Schrödinger equations for time-dependent graphs. We plotted and studied average kinetic energy as a function of time. We obtained spacetime diagrams of a Gaussian wave packet for the star graph.
References
[1] Bom D. Kvantovaya teoriya [Quantum theory]. Moscow, Nauka publ., 1965, 729 p.
[2] Faddeev L.D., Yakubovskiy O.Ya. Lektsii po kvantovoy mekhanike dlya studentov-matematikov [Lectures on quantum mechanics for students-mathematics]. Moscow-Izhevsk, RKhD publ., 2001, 256 p.
[3] Dirac P.A.M. The principles of quantum mechanics. Clarendon Press, 1964, 314 p. (Russ. ed.: Printsipy kvantovoy mekhaniki. Moscow, Nauka publ., 1970, 408 p.).
[4] Szebehely V. Theory of orbits. The restricted problem of three bodies. New York, Academic Press, 1967, 668 p. (Russ. ed.: Teoriya orbit: ogranichennaya zadacha trekh tel. Moscow, Nauka publ., 1982, 656 p.).
[5] Pokornyy Yu.V., Penkin O.M., Pryadiev V.L., Borovskikh A.V., Lazarev K.P., Shabrov S.A. Differentsial’nye uravneniya na geometricheskikh grafakh [Differential equations on geometric graphs]. Moscow, Fizmatlit publ., 2004, 272 p.
[6] Stöckmann H.-J. Quantum chaos: an introduction. Cambridge University Press, 2007, 384 p. (Russ. ed.: Kvantovyy khaos: vvedenie. Moscow, Fizmatlit publ., 2004, 376 p.).
[7] Kulik p.D., Berkov A.V., Yakovlev V.P. Vvedenie v teoriyu kvantovykh vychisleniy (metody kvantovoy mekhaniki v kibernetike). Kn. 2 [Introduction to the theory of quantum calculations (quantum mechanics methods in cybernetics). Vol. 2]. Moscow, MEPhI publ., 2008, 532 p.
[8] Berezin F.A., Shubin M.A. Uravnenie Shredingera [Schrodinger equation]. Moscow, Izdatelstvo Moskovskogo universiteta publ., 1983, 392 p.
[9] Takhtadzhyan L.A., Faddeev L.D. Gamil’tonov podkhod v teorii solitonov [Hamiltonian approach to the soliton theory]. Moscow, Nauka publ., 1986, 527 p.
[10] Tolchennikov A.A. Spektral’nye svoystva operatora Laplasa na dekorirovannykh grafakh i na poverkhnostyakh s del’ta-potentsialami. Diss. kand. fiz.-mat. nauk [Spectral properties of Laplace operator in decorated graphs and on surfaces with delta potential. Kand. phys.-math. sci. diss.]. Moscow, MGU publ., 2009, 59 p.
[11] Levitan B.M., Sargsyan I.S. Operatory Shturma—Liuvillya i Diraka [Sturm-Louisville and Dirac operators]. Moscow, Nauka publ., 1988, 432 p.