Simulating the manipulation robot operation in the Matlab Robotics Toolbox software
Authors: Egorov E.E. | |
Published in issue: #1(42)/2020 | |
DOI: 10.18698/2541-8009-2020-1-567 | |
Category: Mechanical Engineering and Machine Science | Chapter: Robots, Mechatronics, and Robotic Systems |
|
Keywords: manipulator, simulation, Denavit-Hartenberg method, direct and inverse positional problems, kinematics, path planning, Matlab, Robotics Toolbox, Guide |
|
Published: 28.01.2020 |
The paper investigates the capabilities of the MATLAB Robotics Toolbox software package for modeling the movement of a manipulation robot. An algorithm is described for creating a manipulator model in a program based on the Denavit-Hartenberg representation. The study is presented of the manipulation robot kinematics. The direct and inverse positional problems are solved using the internal functions of the software package. The creation of a GUI application in the GUIDE environment for rendering a robot model and modeling its movement is considered. Also authors solved the problem of planning the trajectory of the manipulator grip. The analysis is carried out of the effectiveness of the functions built into the software package and their shortcomings in solving these problems are identified.
References
[1] Zenkevich S.L., Yushchenko A.S. Upravlenie robotami [Robot guidance]. Moscow, Bauman MSTU Publ., 2000 (in Russ.).
[2] Makarov I.M., ed. Robototekhnika i gibkie avtomatizirovannye proizvodstva. Kn. 5. Modelirovanie robototekhnicheskikh sistem i gibkikh avtomatizirovannykh proizvodstv [Robotics and flexible manufacturing systems. Vol. 5. Simulation of robotic systems and flexible manufacturing]. Moscow, Vysshaya shkola Publ., 1986 (in Russ.).
[3] Borisov O.I., Gromov V.S., Pyrkin A.A. Metody upravleniya robototekhnicheskimi prilozheniyami [Guidance methods for robotic applications]. Sankt-Petersburg, ITMO Publ., 2016 (in Russ.).
[4] Gradetskiy V.G., Veshnikov V.B., Kalinichenko S.V., et al. Upravlyaemoe dvizhenie mobil’nykh robotov po proizvol’no orientirovannym v prostranstve poverkhnostyam [guided motion of mobile robots on random spatially-oriented surfaces]. Moscow, Nauka Publ., 2001 (in Russ.).
[5] Chemodanov B.K., ed. Matematicheskie osnovy teorii avtomaticheskogo regulirovaniya [Mathematical fundamentals of automatic regulation theory]. Moscow, Vysshaya shkola Publ., 1977 (in Russ.).
[6] Gradetskiy V.G., Rachkov M.Yu. Roboty vertikal’nogo peremeshcheniya [Vertical motion robots]. Moscow, Minobrazovaniya RF Publ., 1997 (in Russ.).
[7] Kim D.P. Teoriya avtomaticheskogo upravleniya [Automatic control theory]. Moscow, Fizmalit Publ., 2003 (in Russ.).
[8] Corke P. Robotics toolbox. petercorke.com: website. URL: http://petercorke.com/wordpress/toolboxes/robotics-toolbox (accessed: 14.10.2019).
[9] Corke P. Robotics, vision and control: fundamental algorithms in MATLAB. petercorke.com: website. URL: http://www.petercorke.com/RVC1/ (accessed: 14.10.2019).
[10] Panchal K., Vyas C., Patel D. Developing the prototype of wall climbing robot. IJAERD, 2014, vol. 1, no. 3, pp. 58–65.
[11] Shmidt D., Berns K. Climbing robots for maintenance and inspections of vertical structures – A survey of design aspects and technologies. Robot. Auton. Syst., 2013, vol. 61, no. 12, pp. 1288–1305. DOI: http://dx.doi.org/10.1016/j.robot.2013.09.002